Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32.860
Filtrar
1.
Nat Commun ; 15(1): 2953, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580662

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is associated with endothelial dysfunction. We have previously reported that statins prevent endothelial dysfunction through inhibition of microRNA-133a (miR-133a). This study is to investigate the effects and the underlying mechanisms of statins on HFpEF. Here, we show that statins upregulate the expression of a circular RNA (circRNA-RBCK1) which is co-transcripted with the ring-B-box-coiled-coil protein interacting with protein kinase C-1 (RBCK1) gene. Simultaneously, statins increase activator protein 2 alpha (AP-2α) transcriptional activity and the interaction between circRNA-RBCK1 and miR-133a. Furthermore, AP-2α directly interacts with RBCK1 gene promoter in endothelial cells. In vivo, lovastatin improves diastolic function in male mice under HFpEF, which is abolished by loss function of endothelial AP-2α or circRNA-RBCK1. This study suggests that statins upregulate the AP-2α/circRNA-RBCK1 signaling to suppress miR-133a in cardiac endothelial cells and prevent diastolic dysfunction in HFpEF.


Assuntos
Insuficiência Cardíaca , Inibidores de Hidroximetilglutaril-CoA Redutases , MicroRNAs , Animais , Masculino , Camundongos , Células Endoteliais/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , MicroRNAs/metabolismo , RNA Circular/genética , Volume Sistólico/fisiologia
2.
Front Immunol ; 15: 1362727, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585277

RESUMO

Acute pancreatitis is a complex inflammatory disease resulting in extreme pain and can result in significant morbidity and mortality. It can be caused by several factors ranging from genetics, alcohol use, gall stones, and ductal obstruction caused by calcification or neutrophil extracellular traps. Acute pancreatitis is also characterized by immune cell infiltration of neutrophils and M1 macrophages. Toll-like receptor 4 (TLR4) is a pattern recognition receptor that has been noted to respond to endogenous ligands such as high mobility group box 1 (HMGB1) protein and or exogenous ligands such as lipopolysaccharide both of which can be present during the progression of acute pancreatitis. This receptor can be found on a variety of cell types from endothelial cells to resident and infiltrating immune cells leading to production of pro-inflammatory cytokines as well as immune cell activation and maturation resulting in the furthering of pancreatic damage during acute pancreatitis. In this review we will address the various mechanisms mediated by TLR4 in the advancement of acute pancreatitis and how targeting this receptor could lead to improved outcomes for patients suffering from this condition.


Assuntos
Pancreatite , Humanos , Doença Aguda , Células Endoteliais/metabolismo , Pâncreas , Pancreatite/metabolismo , Receptor 4 Toll-Like/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(15): e2322135121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38568964

RESUMO

Endothelial cells (ECs) line the wall of blood vessels and regulate arterial contractility to tune regional organ blood flow and systemic pressure. Chloride (Cl-) is the most abundant anion in ECs and the Cl- sensitive With-No-Lysine (WNK) kinase is expressed in this cell type. Whether intracellular Cl- signaling and WNK kinase regulate EC function to alter arterial contractility is unclear. Here, we tested the hypothesis that intracellular Cl- signaling in ECs regulates arterial contractility and examined the signaling mechanisms involved, including the participation of WNK kinase. Our data obtained using two-photon microscopy and cell-specific inducible knockout mice indicated that acetylcholine, a prototypical vasodilator, stimulated a rapid reduction in intracellular Cl- concentration ([Cl-]i) due to the activation of TMEM16A, a Cl- channel, in ECs of resistance-size arteries. TMEM16A channel-mediated Cl- signaling activated WNK kinase, which phosphorylated its substrate proteins SPAK and OSR1 in ECs. OSR1 potentiated transient receptor potential vanilloid 4 (TRPV4) currents in a kinase-dependent manner and required a conserved binding motif located in the channel C terminus. Intracellular Ca2+ signaling was measured in four dimensions in ECs using a high-speed lightsheet microscope. WNK kinase-dependent activation of TRPV4 channels increased local intracellular Ca2+ signaling in ECs and produced vasodilation. In summary, we show that TMEM16A channel activation reduces [Cl-]i, which activates WNK kinase in ECs. WNK kinase phosphorylates OSR1 which then stimulates TRPV4 channels to produce vasodilation. Thus, TMEM16A channels regulate intracellular Cl- signaling and WNK kinase activity in ECs to control arterial contractility.


Assuntos
Cloretos , Proteínas Serina-Treonina Quinases , Camundongos , Animais , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Cloretos/metabolismo , Células Endoteliais/metabolismo , Canais de Cátion TRPV/metabolismo , Transdução de Sinais/fisiologia
4.
Cell Transplant ; 33: 9636897241241992, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38602231

RESUMO

There is a huge unmet need for new treatment modalities for ocular surface inflammatory disorders (OSIDs) such as dry eye disease and meibomian gland dysfunction. Mesenchymal stem cell therapies may hold the answer due to their potent immunomodulatory properties, low immunogenicity, and ability to modulate both the innate and adaptive immune response. MSC-like cells that can be isolated from the corneal stroma (C-MSCs) offer a potential new treatment strategy; however, an optimized culture medium needs to be developed to produce the ideal phenotype for use in a cell therapy to treat OSIDs. The effects of in vitro expansion of human C-MSC in a medium of M199 containing fetal bovine serum (FBS) was compared to a stem cell medium (SCM) containing knockout serum replacement (KSR) with basic fibroblast growth factor (bFGF) and human leukemia inhibitory factor (LIF), investigating viability, protein, and gene expression. Isolating populations expressing CD34 or using siRNA knockdown of CD34 were investigated. Finally, the potential of C-MSC as a cell therapy was assessed using co-culture with an in vitro corneal epithelial cell injury model and the angiogenic effects of C-MSC conditioned medium were evaluated with blood and lymph endothelial cells. Both media supported proliferation of C-MSC, with SCM increasing expression of CD34, ABCG2, PAX6, NANOG, REX1, SOX2, and THY1, supported by increased associated protein expression. Isolating cell populations expressing CD34 protein made little difference to gene expression, however, knockdown of the CD34 gene led to decreased expression of progenitor genes. C-MSC increased viability of injured corneal epithelial cells whilst decreasing levels of cytotoxicity and interleukins-6 and -8. No pro-angiogenic effect of C-MSC was seen. Culture medium can significantly influence C-MSC phenotype and culture in SCM produced a cell phenotype more suitable for further consideration as an anti-inflammatory cell therapy. C-MSC show considerable potential for development as therapies for OSIDs, acting through anti-inflammatory action.


Assuntos
Células Endoteliais , Células-Tronco Mesenquimais , Humanos , Células Endoteliais/metabolismo , Córnea/metabolismo , Técnicas de Cocultura , Fenótipo , Antígenos CD34/metabolismo , Células Cultivadas , Proliferação de Células , Diferenciação Celular
5.
Cell Commun Signal ; 22(1): 225, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605348

RESUMO

The endothelial glycocalyx, located at the luminal surface of the endothelium, plays an important role in the regulation of leukocyte adhesion, vascular permeability, and vascular homeostasis. Endomucin (EMCN), a component of the endothelial glycocalyx, is a mucin-like transmembrane glycoprotein selectively expressed by venous and capillary endothelium. We have previously shown that knockdown of EMCN impairs retinal vascular development in vivo and vascular endothelial growth factor 165 isoform (VEGF165)-induced cell migration, proliferation, and tube formation by human retinal endothelial cells in vitro and that EMCN is essential for VEGF165-stimulated clathrin-mediated endocytosis and signaling of VEGF receptor 2 (VEGFR2). Clathrin-mediated endocytosis is an essential step in receptor signaling and is of paramount importance for a number of receptors for growth factors involved in angiogenesis. In this study, we further investigated the molecular mechanism underlying EMCN's involvement in the regulation of VEGF-induced endocytosis. In addition, we examined the specificity of EMCN's role in angiogenesis-related cell surface receptor tyrosine kinase endocytosis and signaling. We identified that EMCN interacts with AP2 complex, which is essential for clathrin-mediated endocytosis. Lack of EMCN did not affect clathrin recruitment to the AP2 complex following VEGF stimulation, but it is necessary for the interaction between VEGFR2 and the AP2 complex during endocytosis. EMCN does not inhibit VEGFR1 and FGFR1 internalization or their downstream activities since EMCN interacts with VEGFR2 but not VEGFR1 or FGFR1. Additionally, EMCN also regulates VEGF121-induced VEGFR2 phosphorylation and internalization.


Assuntos
Células Endoteliais , Fator A de Crescimento do Endotélio Vascular , Humanos , Células Endoteliais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Sialomucinas/metabolismo , Endocitose , Clatrina/metabolismo
6.
Fluids Barriers CNS ; 21(1): 34, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605366

RESUMO

The blood-brain barrier (BBB) serves as a highly intricate and dynamic interface connecting the brain and the bloodstream, playing a vital role in maintaining brain homeostasis. BBB dysfunction has been associated with multiple neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS); however, the role of the BBB in neurodegeneration is understudied. We developed an ALS patient-derived model of the BBB by using cells derived from 5 patient donors carrying C9ORF72 mutations. Brain microvascular endothelial-like cells (BMEC-like cells) derived from C9ORF72-ALS patients showed altered gene expression, compromised barrier integrity, and increased P-glycoprotein transporter activity. In addition, mitochondrial metabolic tests demonstrated that C9ORF72-ALS BMECs display a significant decrease in basal glycolysis accompanied by increased basal and ATP-linked respiration. Moreover, our study reveals that C9-ALS derived astrocytes can further affect BMECs function and affect the expression of the glucose transporter Glut-1. Finally, C9ORF72 patient-derived BMECs form leaky barriers through a cell-autonomous mechanism and have neurotoxic properties towards motor neurons.


Assuntos
Esclerose Amiotrófica Lateral , Células-Tronco Pluripotentes Induzidas , Humanos , Barreira Hematoencefálica/metabolismo , Esclerose Amiotrófica Lateral/genética , Células Endoteliais/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia
7.
Cells ; 13(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38607022

RESUMO

Reelin, a large extracellular glycoprotein, plays critical roles in neuronal development and synaptic plasticity in the central nervous system (CNS). Recent studies have revealed non-neuronal functions of plasma Reelin in inflammation by promoting endothelial-leukocyte adhesion through its canonical pathway in endothelial cells (via ApoER2 acting on NF-κB), as well as in vascular tone regulation and thrombosis. In this study, we have investigated the safety and efficacy of selectively depleting plasma Reelin as a potential therapeutic strategy for chronic inflammatory diseases. We found that Reelin expression remains stable throughout adulthood and that peripheral anti-Reelin antibody treatment with CR-50 efficiently depletes plasma Reelin without affecting its levels or functionality within the CNS. Notably, this approach preserves essential neuronal functions and synaptic plasticity. Furthermore, in mice induced with experimental autoimmune encephalomyelitis (EAE), selective modulation of endothelial responses by anti-Reelin antibodies reduces pathological leukocyte infiltration without completely abolishing diapedesis. Finally, long-term Reelin depletion under metabolic stress induced by a Western diet did not negatively impact the heart, kidney, or liver, suggesting a favorable safety profile. These findings underscore the promising role of peripheral anti-Reelin therapeutic strategies for autoimmune diseases and conditions where endothelial function is compromised, offering a novel approach that may avoid the immunosuppressive side effects associated with conventional anti-inflammatory therapies.


Assuntos
Moléculas de Adesão Celular Neuronais , Proteínas da Matriz Extracelular , Animais , Camundongos , Proteínas da Matriz Extracelular/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Serina Endopeptidases/metabolismo , Células Endoteliais/metabolismo , Proteínas do Tecido Nervoso/metabolismo
8.
J Am Heart Assoc ; 13(8): e033881, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38563369

RESUMO

BACKGROUND: Pyroptosis executor GsdmD (gasdermin D) promotes atherosclerosis in mice and humans. Disulfiram was recently shown to potently inhibit GsdmD, but the in vivo efficacy and mechanism of disulfiram's antiatherosclerotic activity is yet to be explored. METHODS AND RESULTS: We used human/mouse macrophages, endothelial cells, and smooth muscle cells and a hyperlipidemic mouse model of atherosclerosis to determine disulfiram antiatherosclerotic efficacy and mechanism. The effects of disulfiram on several atheroprotective pathways such as autophagy, efferocytosis, phagocytosis, and gut microbiota were determined. Atomic force microscopy was used to determine the effects of disulfiram on the biophysical properties of the plasma membrane of macrophages. Disulfiram-fed hyperlipidemic apolipoprotein E-/- mice showed significantly reduced interleukin-1ß release upon in vivo Nlrp3 (NLR family pyrin domain containing 3) inflammasome activation. Disulfiram-fed mice showed smaller atherosclerotic lesions (~27% and 29% reduction in males and females, respectively) and necrotic core areas (~50% and 46% reduction in males and females, respectively). Disulfiram induced autophagy in macrophages, smooth muscle cells, endothelial cells, hepatocytes/liver, and atherosclerotic plaques. Disulfiram modulated other atheroprotective pathways (eg, efferocytosis, phagocytosis) and gut microbiota. Disulfiram-treated macrophages showed enhanced phagocytosis/efferocytosis, with the mechanism being a marked increase in cell-surface expression of efferocytic receptor MerTK. Atomic force microscopy analysis revealed altered biophysical properties of disulfiram-treated macrophages, showing increased order-state of plasma membrane and increased adhesion strength. Furthermore, 16sRNA sequencing of disulfiram-fed hyperlipidemic mice showed highly significant enrichment in atheroprotective gut microbiota Akkermansia and a reduction in atherogenic Romboutsia species. CONCLUSIONS: Taken together, our data show that disulfiram can simultaneously modulate several atheroprotective pathways in a GsdmD-dependent as well as GsdmD-independent manner.


Assuntos
Aterosclerose , Microbioma Gastrointestinal , Masculino , Feminino , Camundongos , Humanos , Animais , Dissulfiram , 60574 , Células Endoteliais/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/prevenção & controle , Autofagia
9.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1017-1027, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621909

RESUMO

Network pharmacology and animal and cell experiments were employed to explore the mechanism of astragaloside Ⅳ(AST Ⅳ) combined with Panax notoginseng saponins(PNS) in regulating angiogenesis to treat cerebral ischemia. The method of network pharmacology was used to predict the possible mechanisms of AST Ⅳ and PNS in treating cerebral ischemia by mediating angiogenesis. In vivo experiment: SD rats were randomized into sham, model, and AST Ⅳ(10 mg·kg~(-1)) + PNS(25 mg·kg~(-1)) groups, and the model of cerebral ischemia was established with middle cerebral artery occlusion(MCAO) method. AST Ⅳ and PNS were administered by gavage twice a day. the Longa method was employed to measure the neurological deficits. The brain tissue was stained with hematoxylin-eosin(HE) to reveal the pathological damage. Immunohistochemical assay was employed to measure the expression of von Willebrand factor(vWF), and immunofluorescence assay to measure the expression of vascular endothelial growth factor A(VEGFA). Western blot was employed to determine the protein levels of vascular endothelial growth factor receptor 2(VEGFR2), VEGFA, phosphorylated phosphatidylinositol 3-kinase(p-PI3K), and phosphorylated protein kinase B(p-AKT) in the brain tissue. In vitro experiment: the primary generation of rat brain microvascular endothelial cells(rBEMCs) was cultured and identified. The third-generation rBMECs were assigned into control, model, AST Ⅳ(50 µmol·L~(-1)) + PNS(30 µmol·L~(-1)), LY294002(PI3K/AKT signaling pathway inhibitor), 740Y-P(PI3K/AKT signaling pathway agonist), AST Ⅳ + PNS + LY294002, and AST Ⅳ + PNS + 740Y-P groups. Oxygen glucose deprivation/re-oxygenation(OGD/R) was employed to establish the cell model of cerebral ischemia-reperfusion injury. The cell counting kit-8(CCK-8) and scratch assay were employed to examine the survival and migration of rBEMCs, respectively. Matrigel was used to evaluate the tube formation from rBEMCs. The Transwell assay was employed to examine endothelial cell permeability. Western blot was employed to determine the expression of VEGFR2, VEGFA, p-PI3K, and p-AKT in rBEMCs. The results of network pharmacology analysis showed that AST Ⅳ and PNS regulated 21 targets including VEGFA and AKT1 of angiogenesis in cerebral infarction. Most of these 21 targets were involved in the PI3K/AKT signaling pathway. The in vivo experiments showed that compared with the model group, AST Ⅳ + PNS reduced the neurological deficit score(P<0.05) and the cell damage rate in the brain tissue(P<0.05), promoted the expression of vWF and VEGFA(P<0.01) and angiogenesis, and up-regulated the expression of proteins in the PI3K/AKT pathway(P<0.05, P<0.01). The in vitro experiments showed that compared with the model group, the AST Ⅳ + PNS, 740Y-P, AST Ⅳ + PNS + LY294002, and AST Ⅳ + PNS + 740Y-P improved the survival of rBEMCs after OGD/R, enhanced the migration of rBEMCs, increased the tubes formed by rBEMCs, up-regulated the expression of proteins in the PI3K/AKT pathway, and reduced endothelial cell permeability(P<0.05, P<0.01). Compared with the LY294002 group, the AST Ⅳ + PNS + LY294002 group showed increased survival rate, migration rate, and number of tubes, up-regulated expression of proteins in the PI3K/AKT pathway, and decreased endothelial cell permeability(P<0.05,P<0.01). Compared with the AST Ⅳ + PNS and 740Y-P groups, the AST Ⅳ + PNS + 740Y-P group presented increased survival rate, migration rate, and number of tubes and up-regulated expression of proteins in the PI3K/AKT pathway, and reduced endothelial cell permeability(P<0.01). This study indicates that AST Ⅳ and PNS can promote angiogenesis after cerebral ischemia by activating the PI3K/AKT signaling pathway.


Assuntos
Isquemia Encefálica , Panax notoginseng , Fragmentos de Peptídeos , Receptores do Fator de Crescimento Derivado de Plaquetas , Saponinas , Triterpenos , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Células Endoteliais/metabolismo , Fator de von Willebrand , 60489 , Farmacologia em Rede , Ratos Sprague-Dawley , Saponinas/farmacologia , Isquemia Encefálica/tratamento farmacológico , Infarto Cerebral
10.
Cell Commun Signal ; 22(1): 212, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566100

RESUMO

The pathogenesis of Parkinson's disease (PD) is strongly associated with neuroinflammation, and type I interferons (IFN-I) play a crucial role in regulating immune and inflammatory responses. However, the specific features of IFN in different cell types and the underlying mechanisms of PD have yet to be fully described. In this study, we analyzed the GSE157783 dataset, which includes 39,024 single-cell RNA sequencing results for five PD patients and six healthy controls from the Gene Expression Omnibus database. After cell type annotation, we intersected differentially expressed genes in each cell subcluster with genes collected in The Interferome database to generate an IFN-I-stimulated gene set (ISGs). Based on this gene set, we used the R package AUCell to score each cell, representing the IFN-I activity. Additionally, we performed monocle trajectory analysis, and single-cell regulatory network inference and clustering (SCENIC) to uncover the underlying mechanisms. In silico gene perturbation and subsequent experiments confirm NFATc2 regulation of type I interferon response and neuroinflammation. Our analysis revealed that microglia, endothelial cells, and pericytes exhibited the highest activity of IFN-I. Furthermore, single-cell trajectory detection demonstrated that microglia in the midbrain of PD patients were in a pro-inflammatory activation state, which was validated in the 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model as well. We identified transcription factors NFATc2, which was significantly up-regulated and involved in the expression of ISGs and activation of microglia in PD. In the 1-Methyl-4-phenylpyridinium (MPP+)-induced BV2 cell model, the suppression of NFATc2 resulted in a reduction in IFN-ß levels, impeding the phosphorylation of STAT1, and attenuating the activation of the NF-κB pathway. Furthermore, the downregulation of NFATc2 mitigated the detrimental effects on SH-SY5Y cells co-cultured in conditioned medium. Our study highlights the critical role of microglia in type I interferon responses in PD. Additionally, we identified transcription factors NFATc2 as key regulators of aberrant type I interferon responses and microglial pro-inflammatory activation in PD. These findings provide new insights into the pathogenesis of PD and may have implications for the development of novel therapeutic strategies.


Assuntos
Interferon Tipo I , Neuroblastoma , Doença de Parkinson , Camundongos , Animais , Humanos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doenças Neuroinflamatórias , Células Endoteliais/metabolismo , NF-kappa B/metabolismo , Análise de Célula Única , Camundongos Endogâmicos C57BL
11.
Nat Commun ; 15(1): 3118, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600061

RESUMO

Formation of organo-typical vascular networks requires cross-talk between differentiating parenchymal cells and developing blood vessels. Here we identify a Vegfa driven venous sprouting process involving parenchymal to vein cross-talk regulating venous endothelial Vegfa signaling strength and subsequent formation of a specialized angiogenic cell, prefabricated with an intact lumen and pericyte coverage, termed L-Tip cell. L-Tip cell selection in the venous domain requires genetic interaction between vascular Aplnra and Kdrl in a subset of venous endothelial cells and exposure to parenchymal derived Vegfa and Apelin. Parenchymal Esm1 controls the spatial positioning of venous sprouting by fine-tuning local Vegfa availability. These findings may provide a conceptual framework for understanding how Vegfa generates organo-typical vascular networks based on the selection of competent endothelial cells, induced via spatio-temporal control of endothelial Kdrl signaling strength involving multiple parenchymal derived cues generated in a tissue dependent metabolic context.


Assuntos
60489 , Células Endoteliais , Células Endoteliais/metabolismo , Sinais (Psicologia) , Neovascularização Fisiológica/genética , Veias
12.
Fluids Barriers CNS ; 21(1): 32, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38584257

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), which is associated with various neurological symptoms, including nausea, dizziness, headache, encephalitis, and epileptic seizures. SARS-CoV-2 is considered to affect the central nervous system (CNS) by interacting with the blood-brain barrier (BBB), which is defined by tight junctions that seal paracellular gaps between brain microvascular endothelial cells (BMECs). Although SARS-CoV-2 infection of BMECs has been reported, the detailed mechanism has not been fully elucidated. METHODS: Using the original strain of SARS-CoV-2, the infection in BMECs was confirmed by a detection of intracellular RNA copy number and localization of viral particles. BMEC functions were evaluated by measuring transendothelial electrical resistance (TEER), which evaluates the integrity of tight junction dynamics, and expression levels of proinflammatory genes. BMEC signaling pathway was examined by comprehensive RNA-seq analysis. RESULTS: We observed that iPSC derived brain microvascular endothelial like cells (iPSC-BMELCs) were infected with SARS-CoV-2. SARS-CoV-2 infection resulted in decreased TEER. In addition, SARS-CoV-2 infection decreased expression levels of tight junction markers CLDN3 and CLDN11. SARS-CoV-2 infection also increased expression levels of proinflammatory genes, which are known to be elevated in patients with COVID-19. Furthermore, RNA-seq analysis revealed that SARS-CoV-2 dysregulated the canonical Wnt signaling pathway in iPSC-BMELCs. Modulation of the Wnt signaling by CHIR99021 partially inhibited the infection and the subsequent inflammatory responses. CONCLUSION: These findings suggest that SARS-CoV-2 infection causes BBB dysfunction via Wnt signaling. Thus, iPSC-BMELCs are a useful in vitro model for elucidating COVID-19 neuropathology and drug development.


Assuntos
COVID-19 , Células-Tronco Pluripotentes Induzidas , Humanos , SARS-CoV-2 , Via de Sinalização Wnt , Células Endoteliais/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Encéfalo/irrigação sanguínea , Barreira Hematoencefálica/metabolismo
13.
Int J Nanomedicine ; 19: 3123-3142, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585474

RESUMO

Purpose: To study whether the absence of laminar shear stress (LSS) enables the uptake of very small superparamagnetic iron oxide nanoparticles (VSOP) in endothelial cells by altering the composition, size, and barrier function of the endothelial surface layer (ESL). Methods and Results: A quantitative particle exclusion assay with living human umbilical endothelial cells using spinning disc confocal microscopy revealed that the dimension of the ESL was reduced in cells cultivated in the absence of LSS. By combining gene expression analysis, flow cytometry, high pressure freezing/freeze substitution immuno-transmission electron microscopy, and confocal laser scanning microscopy, we investigated changes in ESL composition. We found that increased expression of the hyaluronan receptor CD44 by absence of shear stress did not affect the uptake rate of VSOPs. We identified collagen as a previously neglected component of ESL that contributes to its barrier function. Experiments with inhibitor halofuginone and small interfering RNA (siRNA) demonstrated that suppression of collagen expression facilitates VSOP uptake in endothelial cells grown under LSS. Conclusion: The absence of laminar shear stress disturbs the barrier function of the ESL, facilitating membrane accessibility and endocytic uptake of VSOP. Collagen, a previously neglected component of ESL, contributes to its barrier function.


Assuntos
Células Endoteliais , Nanopartículas Magnéticas de Óxido de Ferro , Humanos , Células Endoteliais/metabolismo , Endotélio , Perfilação da Expressão Gênica , Colágeno/metabolismo , Estresse Mecânico , Células Cultivadas
14.
JCI Insight ; 9(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587072

RESUMO

The roles of fibronectin leucine-rich transmembrane protein 2 (FLRT2) in physiological and pathological processes are not well known. Here, we identify a potentially novel function of FLRT2 in preventing endothelial cell senescence and vascular aging. We found that FLRT2 expression was lower in cultured senescent endothelial cells as well as in aged rat and human vascular tissues. FLRT2 mediated endothelial cell senescence via the mTOR complex 2, AKT, and p53 signaling pathway in human endothelial cells. We uncovered that FLRT2 directly associated with integrin subunit beta 4 (ITGB4) and thereby promoted ITGB4 phosphorylation, while inhibition of ITGB4 substantially mitigated the induction of senescence triggered by FLRT2 depletion. Importantly, FLRT2 silencing in mice promoted vascular aging, and overexpression of FLRT2 rescued a premature vascular aging phenotype. Therefore, we propose that FLRT2 could be targeted therapeutically to prevent senescence-associated vascular aging.


Assuntos
Células Endoteliais , Proteína Supressora de Tumor p53 , Animais , Humanos , Camundongos , Ratos , Envelhecimento , Células Endoteliais/metabolismo , Integrina beta4/genética , Integrina beta4/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Glicoproteínas de Membrana/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
15.
J Vis Exp ; (205)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38587393

RESUMO

Tendons enable locomotion by transferring muscle forces to bones. They rely on a tough tendon core comprising collagen fibers and stromal cell populations. This load-bearing core is encompassed, nourished, and repaired by a synovial-like tissue layer comprising the extrinsic tendon compartment. Despite this sophisticated design, tendon injuries are common, and clinical treatment still relies on physiotherapy and surgery. The limitations of available experimental model systems have slowed the development of novel disease-modifying treatments and relapse-preventing clinical regimes. In vivo human studies are limited to comparing healthy tendons to end-stage diseased or ruptured tissues sampled during repair surgery and do not allow the longitudinal study of the underlying tendon disease. In vivo animal models also present important limits regarding opaque physiological complexity, the ethical burden on the animals, and large economic costs associated with their use. Further, in vivo animal models are poorly suited to systematic probing of drugs and multicellular, multi-tissue interaction pathways. Simpler in vitro model systems have also fallen short. One major reason is a failure to adequately replicate the three-dimensional mechanical loading necessary to meaningfully study tendon cells and their function. The new 3D model system presented here alleviates some of these issues by exploiting murine tail tendon core explants. Importantly, these explants are easily accessible in large numbers from a single mouse, retain 3D in situ loading patterns at the cellular level, and feature an in vivo-like extracellular matrix. In this protocol, step-by-step instructions are given on how to augment tendon core explants with collagen hydrogels laden with muscle-derived endothelial cells, tendon-derived fibroblasts, and bone marrow-derived macrophages to substitute disease- and injury-activated cell populations within the extrinsic tendon compartment. It is demonstrated how the resulting tendon assembloids can be challenged mechanically or through defined microenvironmental stimuli to investigate emerging multicellular crosstalk during disease and injury.


Assuntos
Células Endoteliais , Traumatismos dos Tendões , Animais , Camundongos , Humanos , Células Endoteliais/metabolismo , Estudos Longitudinais , Tendões/fisiologia , Traumatismos dos Tendões/metabolismo , Traumatismos dos Tendões/cirurgia , Colágeno/metabolismo , Engenharia Tecidual/métodos
16.
Sci Rep ; 14(1): 8196, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589444

RESUMO

In atherosclerotic lesions, monocyte-derived macrophages are major source of interferon gamma (IFN-γ), a pleotropic cytokine known to regulate the expression of numerous genes, including the antiviral gene RSAD2. While RSAD2 was reported to be expressed in endothelial cells of human carotid lesions, its significance for the development of atherosclerosis remains utterly unknown. Here, we harnessed publicly available human carotid atherosclerotic data to explore RSAD2 in lesions and employed siRNA-mediated gene-knockdown to investigate its function in IFN-γ-stimulated human aortic smooth muscle cells (hAoSMCs). Silencing RSAD2 in IFN-γ-stimulated hAoSMCs resulted in reduced expression and secretion of key CXCR3-chemokines, CXCL9, CXCL10, and CXCL11. Conditioned medium from RSAD2-deficient hAoSMCs exhibited diminished monocyte attraction in vitro compared to conditioned medium from control cells. Furthermore, RSAD2 transcript was elevated in carotid lesions where it was expressed by several different cell types, including endothelial cells, macrophages and smooth muscle cells. Interestingly, RSAD2 displayed significant correlations with CXCL10 (r = 0.45, p = 0.010) and CXCL11 (r = 0.53, p = 0.002) in human carotid lesions. Combining our findings, we uncover a novel role for RSAD2 in hAoSMCs, which could potentially contribute to monocyte recruitment in the context of atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/genética , Interferons , Células Endoteliais/metabolismo , Meios de Cultivo Condicionados/farmacologia , Quimiocinas/genética , Quimiocinas/metabolismo , Quimiocina CXCL11/genética , Quimiocina CXCL11/metabolismo , Quimiocina CXCL9/metabolismo , Interferon gama/farmacologia , Interferon gama/metabolismo , Aterosclerose/genética , Miócitos de Músculo Liso/metabolismo , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Receptores CXCR3/genética , Receptores CXCR3/metabolismo , Proteína Viperina
17.
Fluids Barriers CNS ; 21(1): 33, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589879

RESUMO

BACKGROUND: The blood-brain barrier (BBB) is pivotal for the maintenance of brain homeostasis and it strictly regulates the cerebral transport of a wide range of endogenous compounds and drugs. While fasting is increasingly recognized as a potential therapeutic intervention in neurology and psychiatry, its impact upon the BBB has not been studied. This study was designed to assess the global impact of fasting upon the repertoire of BBB transporters. METHODS: We used a combination of in vivo and in vitro experiments to assess the response of the brain endothelium in male rats that were fed ad libitum or fasted for one to three days. Brain endothelial cells were acutely purified and transcriptionaly profiled using RNA-Seq. Isolated brain microvessels were used to assess the protein expression of selected BBB transporters through western blot. The molecular mechanisms involved in the adaptation to fasting were investigated in primary cultured rat brain endothelial cells. MCT1 activity was probed by in situ brain perfusion. RESULTS: Fasting did not change the expression of the main drug efflux ATP-binding cassette transporters or P-glycoprotein activity at the BBB but modulated a restrictive set of solute carrier transporters. These included the ketone bodies transporter MCT1, which is pivotal for the brain adaptation to fasting. Our findings in vivo suggested that PPAR δ, a major lipid sensor, was selectively activated in brain endothelial cells in response to fasting. This was confirmed in vitro where pharmacological agonists and free fatty acids selectively activated PPAR δ, resulting in the upregulation of MCT1 expression. Moreover, dosing rats with a specific PPAR δ antagonist blocked the upregulation of MCT1 expression and activity induced by fasting. CONCLUSIONS: Altogether, our study shows that fasting affects a selected set of BBB transporters which does not include the main drug efflux transporters. Moreover, we describe a previously unknown selective adaptive response of the brain vasculature to fasting which involves PPAR δ and is responsible for the up-regulation of MCT1 expression and activity. Our study opens new perspectives for the metabolic manipulation of the BBB in the healthy or diseased brain.


Assuntos
Barreira Hematoencefálica , PPAR delta , Ratos , Masculino , Animais , Barreira Hematoencefálica/metabolismo , PPAR delta/metabolismo , Células Endoteliais/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Encéfalo/metabolismo , Jejum
18.
Monoclon Antib Immunodiagn Immunother ; 43(2): 53-58, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38593441

RESUMO

The giant panda (Ailuropoda melanoleuca) is one of the important species in worldwide animal conservation. Because it is essential to understand the disease of giant panda for conservation, histopathological analyses of tissues are important to understand the pathogenesis. However, monoclonal antibodies (mAbs) against giant panda-derived proteins are limited. Podoplanin (PDPN) is an essential marker of lung type I alveolar epithelial cells, kidney podocytes, and lymphatic endothelial cells. PDPN is also overexpressed in various human tumors, which are associated with poor prognosis. Here, an anti-giant panda PDPN (gpPDPN) mAb, PMab-314 (mouse IgG1, kappa) was established using the Cell-Based Immunization and Screening method. PMab-314 recognized N-terminal PA16-tagged gpPDPN-overexpressed Chinese hamster ovary-K1 cells (CHO/PA16-gpPDPN) in flow cytometry. The KD value of PMab-314 for CHO/PA16-gpPDPN was determined as 1.3 × 10-8 M. Furthermore, PMab-314 is useful for detecting gpPDPN in western blot analysis. These findings indicate that PMab-314 is a useful tool for the analyses of gpPDPN-expressed cells.


Assuntos
Anticorpos Monoclonais , Ursidae , Cricetinae , Camundongos , Animais , Humanos , Cricetulus , Células CHO , Células Endoteliais/metabolismo , Glicoproteínas de Membrana , Especificidade de Anticorpos , Fatores de Transcrição
19.
Nat Commun ; 15(1): 2860, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570491

RESUMO

High-grade serous ovarian carcinoma (HGSOC) is genetically unstable and characterised by the presence of subclones with distinct genotypes. Intratumoural heterogeneity is linked to recurrence, chemotherapy resistance, and poor prognosis. Here, we use spatial transcriptomics to identify HGSOC subclones and study their association with infiltrating cell populations. Visium spatial transcriptomics reveals multiple tumour subclones with different copy number alterations present within individual tumour sections. These subclones differentially express various ligands and receptors and are predicted to differentially associate with different stromal and immune cell populations. In one sample, CosMx single molecule imaging reveals subclones differentially associating with immune cell populations, fibroblasts, and endothelial cells. Cell-to-cell communication analysis identifies subclone-specific signalling to stromal and immune cells and multiple subclone-specific autocrine loops. Our study highlights the high degree of subclonal heterogeneity in HGSOC and suggests that subclone-specific ligand and receptor expression patterns likely modulate how HGSOC cells interact with their local microenvironment.


Assuntos
Neoplasias Ovarianas , Microambiente Tumoral , Humanos , Feminino , Microambiente Tumoral/genética , Células Endoteliais/metabolismo , Neoplasias Ovarianas/patologia , Perfilação da Expressão Gênica , Variações do Número de Cópias de DNA
20.
Nat Commun ; 15(1): 2865, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570528

RESUMO

Targeting neovascularization in glioblastoma (GBM) is hampered by poor understanding of the underlying mechanisms and unclear linkages to tumour molecular landscapes. Here we report that different molecular subtypes of human glioma stem cells (GSC) trigger distinct endothelial responses involving either angiogenic or circumferential vascular growth (vasectasia). The latter process is selectively triggered by mesenchymal (but not proneural) GSCs and is mediated by a subset of extracellular vesicles (EVs) able to transfer EGFR/EGFRvIII transcript to endothelial cells. Inhibition of the expression and phosphorylation of EGFR in endothelial cells, either pharmacologically (Dacomitinib) or genetically (gene editing), abolishes their EV responses in vitro and disrupts vasectasia in vivo. Therapeutic inhibition of EGFR markedly extends anticancer effects of VEGF blockade in mice, coupled with abrogation of vasectasia and prolonged survival. Thus, vasectasia driven by intercellular transfer of oncogenic EGFR may represent a new therapeutic target in a subset of GBMs.


Assuntos
Neoplasias Encefálicas , Vesículas Extracelulares , Glioblastoma , Glioma , Humanos , Animais , Camundongos , Células Endoteliais/metabolismo , Glioma/metabolismo , Glioblastoma/metabolismo , Receptores ErbB/metabolismo , Vesículas Extracelulares/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias Encefálicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...